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Conditions are presented for which the lower part of the spectrum of the mem- 

brane problem consists of an infinite series ofeigenvalues converging to the lower 
bound of the continuous spectrum. It is shown that boundary layer theory [l] is 
applicable to this portion of the spectrum and the first approximation is obtained 
for the eigenvalues. 

The equations of natural axisymmetric vibrations of a thin elastic shell of revolution 

are @, 31: 

Here the parameter s is the arclength of a meridian of the middle surface measured 

from some fixed point, B (a) is the distance between a variable point on the meridian 

and the axis of revolution. The projections of displacement of the middle surface point 
in the directions of the meridian and of the normal to the surface and denoted by u (s) 

and w (a). For the principal radii of curvature we have 

R,-’ = - r (1 - (B’)“)-%, Rs-1 = (1 - (B’)s)‘/&l 

The spectral parameter a is proportional to the square of the vibrations frequency, 
the small parameter h is the relative shell thickness, and o is Poisson’s ratio. The coef- 
ficients of (0.1) are assumed sufficiently smooth. 

Let us bound the shell by two parallels s = S, and s = s,, and let us take the follow- 
ing boundary conditions 

L! (sr) = u (ss) = w (sr) = w (ss) = w’ (sr) = w’ (s*) = 0 (0.2) 
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Besides the system (0.1). the membrane system of equations (h = 0) 

--~i$~j-(~i~+~~+~,~+~!~+~I tz? 

with the boundary conditions 

U (SJ = U (ss) = 0 
will be considered. 

(0.4) 

After the researches contained in [4] and [3] it became clear that the determination 

of the natural shell vibrations frequencies belonging to a range of variation of the func- 
tion 

v1 (4 = -&$- (Sl < s e a) 

by asymptotic methods causes difficulties because of the presence of a turning point in 

the system (0.3). Let [a, b] denote the range of variation of the function (0.5). As 
has been shown by Lidskii and the author in [5], this range belongs to the continuous 

spectrum of the problem (0.3), (0.4). 
Conditions are mentioned in Sect. 1 for which there exists an infinite series of eigen- 

values of the boundary value problem (0.3). (0.4) which converges from below to the 
point CL, and also given is the condition for which there exists an infinite series converg- 

ing to the point fi from above ( l ). A continuous spectrum, as well as an infinite series 
of eigenvalues, converging to a finite point cannot exist in bending theory (h # 0) , but 

any finite number ofeigenvalues similar to the membrane values, can be obtained on 
the portion h, < a for sufficiently small h. It is shown in Sect.2 that the eigenvalues 

satisfying the inequality h,< e asymptotic expansions in powers of h’h are valid (the 
conditions of degeneration regularity in the sense stated by the authors of [l] are satis- 
fied). 

1, Membrrne ~1~8. Let us replace the system (0.3) by one equation. To do 

this, let us find w from the second equation and let us substitute it into the first equation. 
If ‘A. does not belong to the domain of values of the function 

‘5 1 
‘pz (9) = -&- + X(s) Hz (s) + - Rz2 (s) 

then this can always be done. We obtain 

(h - cpl (s)) --g + b (s, h) -$- f c (s, A) 1.5 = 0 
h (4 

(1.1) 

(1.2) 

(1.3) 

Here bi (s) and Ci (s) (i = 1, 2, 3) are some smooth functions independent of h. Let 
us recall that (1.5) 

If 31. = U, then (1.2) becomes singular. For simplicity, let us assume that inf VP1 (8) 

l ) Such a series was noted earlier in the case of a cylinder and a sphere [6, 71. 
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is achieved in (1.5) at one point s = s,. For definiteness, let s,, # .s,. Let us form the 

Cauchy problem (1.2) at the left endpoint 

u (sr, A) = 0, u’(sr,h) =1 &<a) (1.6) 

Let us first establish the following auxiliary proposition.. 

Lemma 1.1. For h = a > 0 let the solution u (s, h) of the problem (1.6) for 

(1.2) have an infinite number of zeros in the open interval [sr, Ss) . Then an infinity 
of eigenvalues of the problem (0.3). (0.4) is located below a . 

Proof. Let N be an arbitrary natural number. Let us select 8 so small that the 
function u (s, a) would have N + 1 zeros in the segment [sr, s0 - 81. Afterwards, let us 
select h < c!c so slightly different from a that u (s, h) would also vanish N + i times 

on the segment [s,, s0 - 8) . This can be done because of the theorem on the continuous 

dependence of the solution of (1.6) on the parameter h. 
Let us diminish h. We note that as h 4 - 00 the solution u (s, h) has no zeros at 

all within the segment [sr, ss], as follows from (1.2)-(I. 4) taking account of the Sturm 
theorem ( l ) . Since the zeros of the solution of (1.6) are not multiple for h < cc (by 
virtue of the uniqueness theorem) and are continuous functions of h, then as-k diminishes 
they pass through the point ss (they cannot reach s1 since u (s,h) + 0). Therefore, no less 

than N eigenvalues of the problem (0.3) (0.4) exist. Since N is arbitrary, Lemma 1.1 
is proved. 

Note 1.1. From the proof of the Lemma it follows that if there are N zeros in the 
interval (sr, s,-,) for the Cauchy solution at h = a then below h = a at least iv eigen- 
values are located. 

Note 1.2. An analogous lemma can be proved even when the set of points so is 
arbitrary. The Cauchy problem must then be posed at the point s’,where ‘pr (s’) > a. 

It is assumed below that so = 0. 
Lemma 1.2. In the neighborhood of the point so = 0 let (1.2) be 

L (2 + 0 (s3))uN + 2L (s + 0 (s2))u’ + (M + 0 (W = 0 (1.7) 

where the terms 0 (si) admit of formal differentiation. Then in order for the nontrivial 
solution to have an infinity of zeros, it is necessary and sufficient that 

L2 - 4LM<O 

Proof. The proof is analogous to that in [8]. 

Now, in the neighborhood of the point s = 0 let the function B (s) have the Taylor 
expansion B (s) = B. + Bls + ‘I,B,s= + ‘/e Bss + .-- (1.8) 

Here B, > 0, 1 B, 1 < 1 and it can always be considered that B, > 0. It is easy to verify 

that the function q1 (s) can have an extremum at the point s = 0 either for B, = 0 or 

l ) Indeed the substitution 

b (6, ?4 
h--1(s) ds ) 

results in the binomial equation 

u” ‘r p (s, 1) u = 0, p (s, h) = 1 + 0 (1) < 0 
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for B, = (B12 - 1) B,-l. The first condition is evidently satisfied if s = 0 is a station- 
ary point of the meridian, and for Br # 1! the second condition agrees with the condition 

Br = R,, i. e. the corresponding point is umbilical. Having investigated these cases we 
obtain two theorems on the infiniteness of the lower series of eigenvalues. 

Theorem 1.1. In the expansion (1.8) let 

B, = 0, --1,( B,B,.< 0 U.9) 

40= - (120 - i)B,B, -I- 9 (4,BJ2> 0 

and let the function “pl (s) have a minimum at s = 0 

which is absolute: ‘pt (0) = a > 0, then there exists 

an infinite series of eigenvalues of the problem (0.3), (0.4) 
which converges to the point cz from below. 

Note 1. 3. The second condition in (1.9) means 
geometrically that the function B (s) has a maximum at 
the point s = 0 and the radius of the circle adjoining the 

meridian at this point is not less than the distance to the 

axis of revolution (Fig. 1). A sphere and cylinder are two 

I 
extreme cases of such a shell for which B,B, equal -1 

I and 0, respectively. 

Fig. 1 Note 1. 4. For CT > l/z4 the third condition of 
(1.9) is satisfied as long as the first two are satisfied. 

Proof of Theorem 1.1. By direct computation it can be verified that if 
B,,B, # 0, --1, then in the neighborhood of the point s = 0 Eq. (1.2) has the form 

(le7) for h = a and L =- [(fj&2)2 + B&J, M = [2 (B&# - 3oBoB, + a21 

There remains just to apply Lemmas 1.2 and 1.1. If BoB, equals 0, or -1, then L =O 

and the proof becomes more complex. The appropriate investigation is omitted here. 

Theorem 1. 2. Let 0 < B, < 1 in the expansion (1.8) and 

B, = (B12 - 1)&,-l, B, < B, (B12 - l)B,-2 

For s z 0 let the function ‘pr (a) have a minimum which is absolute, ‘pt (0) = 
= a > 0. Then there exists an infinite series of eigenvalues converging to the point 

& from below. 

The proof is analogous to the proof of Theorem 1.1. For h -= CL Eq. (1.2) has the 
form (1.7) in the neoghborhood of the point s = 0 with 

L = --&B3BO-‘: - B,” (1 - B,?) B,-’ (f.iO) 

of = f, -+- (2 + 30 + oe) (1 - B,“)“B,-4 

If L # 0, then by applying Lemmas 1.2 and 1.1 we obtain the assertion of the Theo- 
rem. When L = u an additional investigation, omitted here. is made. 

Note 1. 5. If the function & (s) reaches a minimum on the boundary with a 
nonzero derivative, then by analogous methods it can be shown that there cannot be an 

infinity of zeros in the solution of the corresponding singular equation. It follows from 
Theorem 1.2 (see [5]) that there can be only a finite number of eigenvalues lying 

below o. 
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ruote 1.6. An analysis of the equations obtained for h = b = supcp,(s) shows 
that an infinity of zeros in the nontrivial solution exists only when the point s,, with 
‘PI (So) = b is an umbilical, and -3L-4 n/l < 0 (L and &,are the same as in 

(1. lo) )* If inf (p2 (S) > SUP ‘PI (49 then this condition is sufficient for the existence 
of an infinite series of eigenvalues of the problem (0.3), (0.4) which converges to the 
point p from above. 

2, Approximation of efgenvrluer rnd eigenfunctionr of the 
bending problem, To seek the eigenvalues of the bending problem hk < a the 

asymptotic method stated in [l] can be applied, where Theorem 13 is essentially utilized 
in the proof. Let us just note the changes which should be inserted in the proof in con- 
nection with the fact that a system is considered rather than one equation. In order not 
to complicate the exposition, we shall limit ourselves just to the first approximation for 
the eigennumbers and eigenvectors. 

Let us rewrite the system (0.1) in the form 

-u’ f a,u’ + a,+ f b,w’ + bow = hu (2.1) 

CllL’ + C$ + d,w + Ed; (P + d,w”’ + d*w” + dlW’) = Iw, ~~ = ‘/x2 h2 

The left sides of (0.3) and (2.1) give the linear operators Lo and L, = Lo + e4L,, which 
it is essential to examine in the space of function pairs f = (u, W) where the scalar 
product is introduced by means of the formula 

(fl? f2) = T ( ur& + &&) Bds 

81 

It is easy to verify that the operator L,, is symmetric and positive definite under the 

boundary conditions (0.4), and the operator &is symmetric under the boundary condi- 
tions (0.2). The same letters will denote their closures. 

Let s1 = 0 and in the neighborhood of the point 0 let all the coefficients of (2.1) 
be expanded in Taylor series as for example: 

al (s) = alo + aI% + aI? + . . . 

Let us set 
h, = h, + Ehl + . . . 

Let us transfer all the terms in (2.1) to the left, and make the change of variable s = at 
We note that it is more convenient to consider the unknown function to be e-ru rather 
than II . Ordering terms in powers of e we obtain 

e-1 ; e%i’ (E-l& w) + E'~\ia' (e-l u, w) = 0 

i=O 

i ei Mi2(~-1 u, w)+ E?X~~(~-~U, zu) = 0 

i=o 

The left side of these formulas yields the partition of the operator L, - h,r in the 
neighborhood of the point s = 0 which plays the same part as (2.9) from [l]. Here the 
operators M,,’ and Md with constant coefficients are 

Jl,,r(~-lu, zu) = - (e-lU)t” + bl” wt’ 

MrJ2 (&-‘u, w) = - bl” (E-~u)~’ + do” w + wtIV - ?LQW 
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The coefficients of the operators Mi’ and Mi2 (i = 1, 2) are polynomials of degree no 
greater than 2, and the coefficients of the operators Msl and MS2 are third degree poly- 

nomials multiplied by bounded functions. The system 

Mol (E-lu, w) = 0, M,2 (E%, w) = 0 

has the following solutions 

ziO = (uiO,wOi), a-‘uiO = br”p,-1 eoi’, WiO ZZ @, 1=&-/E (2.2) 

for h < (1 - 0’) Rze2 (0) where the Pi (i = i, 2, 3, 4) are fourth power roots of 

(a,, - (1 - o?) Rt-” (0)) 

Two other solutions of this system are obtained for p5 = pa = 0. Two roots p1 and ps lie 
in the left half-plane, hence the degeneration is regular in the sense of [l]. An analog- 
ous partition of the operator can be constructed at the right endpoint and we see that the 
right endpoint is also regular. 

The first approximation for the eigenfunctions is sought in the form 

f,’ = fo + Efro + 21 + eZZ + E%s + Ec$ + e2a,+@a3 

Here the vectors f,, and fro are solutions of the degenerate system, Zi = (47 u-3 are solu- 

tions of boundary layer type and ai are corrections. These vectors are constructed as 
follows. In the expression L, f,’ - @l-j- h1e) f,’ (2.3) 

we equate terms in the smallest powers of t’ to zero. We obtain five systems of equations 

Lofo - hafo = 0 (2.4) 

MO1 (E%~, u,) = 0, M,” (&-lq, q) = 0 (2.5) 

(L, - A,) fro - kf0 = &al - LOXI (2.6) 

MO1 (&-*u?,z&) = --MI1 (E%Ll, w,), M,? (~3~. ILL) = -M12 (E-‘u,, 1~‘~) (2.7) 

MO1 (e%s, wg) = -MI1 (E%~, a) - M,’ (E-~+ ~1) (2.81 

Mos (E-~u~,L+) _ -Ml2 (E-lZL, zr2) - M2? (&-‘I+ trl) 

The vector f. is the solution of the degenerate system (2.4) under the boundary condi- 

tions (0.4). The vector ~1 = (al! WI) is sought in the neighborhood of the point 0 in 
the form of a linear combination of the solutions zrU and %0 from (2.2) so that the sum 

lo T ~1 would satisfy the boundary conditions on the component w from (0.2) at the left 

endpoint. We find the vector z1 in the neighborhood of the right endpoint analogously, 

and we match them exactly as in [l] by using infinitely differentiable cutoff functions. 
We find the correction vi in the form al = (alUl O), where alu is a zero degree polynom- 
ial such that the sum f0 + z1 + aal satisfies all the boundary conditions (0.2) at the 
left endpoint. We then construct the correction at the right endpoint and match them. 
Afterwards we find the solution fro of the system (2.6) which satisfies the bpundary con- 
ditions (0.4). This solution exists ( Cl], p. 110, Note c) if 

h, = -_(~oa, - &a,, io) (2.9) 

A solution + of the system (2.7) can be found such that its components are the product 
of first degree polynomials in t by the exponential of the boundary layer (2.2). and the 
vector Z? is such that f rof + satisfies conditions on 1~’ from (0.2) at the left endpoint. 
The vector z, , exactly as zl, is matched at the two ends and the correction a2 is found. 

The vectors z3 and a3 are sought analogously to zC and a2 with the sole difference that 
33 must satisfy the boundary conditions on ID from (0.2). 
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l ) After the paper bad been readied for &e @mr, &he auxbot 2emed rizat Tow&k had 

independently derived an analogous formula, 
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ELECTROMECHANICAL VIBRATIONS OF CENTROSYMMETRIC 
CUBIC CRYSTAL PLATES 

PMM Vol. 35, Nn3, 1971, pp. 446-450 

R. D. MINDLIN 
(Columbia University, New York, U. S. A. ) 

(This paper was copied from the original 
manuscript kindly supplied by the Author) 

Introduction. According to the classical theory of piezoelectricity. there 
can be no piezoelectric effect in centrosymmetric crystals. Consequently the 
theory has it that vibrations of a centrosymmetric crystal plate cannot be excited, 
for example, by applying an alternating voltage drop between electrodes on the 
opposing faces of the plate. This conclusion is a direct result. of the assumption, 
in the theory, that the stored energy of deformation and polarization is a function 
of the strain and polarization only [l]. Hence the only possible electromechani- 
cal interaction energy is the product of a second rank tensor (strain) and a first 

rank tensor (polarization) - with a third rank material coefficient (a piezoelec- 
tric constant). Since there are no third rank centrosymmetric tensors, there is no 
piezoelectric effect in centrosymmetric materials. 

There is reason to believe, however, that the stored energy of deformation and 


